您正在浏览的是香港网站,香港证监会BJA907号,投资有风险,交易需谨慎
夜读 | ChatGPT背后

作者:韦青 微软中国CTO

来源:混沌学园

 

导读

ChatGPT怎么突然就火了?
他说,“山中方七日,世上几千年。当你埋头在屋子里面,研究最新技术进展,比如现在的最火的ChatGPT,出门一看,好像满世界的人都把它当成了很新鲜的事情。其实ChatGPT3.0算是一个比较大的突破,但它两年前就有了。它的结构、基本原理也存在很多年了。”
这轮技术到底是什么?ChatGPT真的会思考吗?
他说,“这轮技术,大概率就是把我们的知识进行提炼……机器是不会想的,想这个词是人类自己发明出来的。如果你硬把这种能力视为“想”,不能说错与对,但它会误导你对机器的判断、理解和定义。”
ChatGPT究竟是怎么做出来的?
他说,“Sam Altman(OpenAI CEO)那批人就是坚信大模型大力出奇迹,就能够表征人类的知识,就这么简单。”
……
ChatGPT的本质是什么?是否将替代人类工作?我们人类又该如何与之共存?
今天,我们邀请韦青老师,微软中国CTO做客混沌。他将利用工程师的底层视角,为大家揭开人工智能的冰山一角,探寻ChatGPT为何全球爆火。
韦青老师说,“大家有没有感觉到,每天好像都是见证时代的一天。由于我们的工作背景,在技术领域、在微软,能看到更多现象,我想跟大家讲,首先看到任何现象,先不用感到惊讶。帷幕刚拉开一角,舞台尚未完全展开。”

01

比真还真的时代

1. 我们需要通过ChatGPT理解什么?
GPT是现在最热门的话题,但GPT3模型两年前就培训出来了。GPT4的出现让人惊艳,但去年8月份它就已经被训练出来了。
什么意思?ChatGPT实际上是冰山一角。当我们看到某些现象出现的时候,某种意义来讲,这件事已经结束了。而这个时代才刚刚开始,ChatGPT现象会层出不穷。
再追逐冰山已经没什么意思了,我们要尽快通过浮起的冰山,去理解我们可能进入了一片冰山丛生的海洋。
从一个本质性的构成来讲,人类对世界的认知已经经历了三个阶段:农业时代是物质构成的。有地、有粮、有人就等于有权力,有生存的空间;工业时代如果你有能源、有动力,比有粮食还具备竞争力;到第三阶段,人类发现信息也是构成世界的一种本源性的存在。思想受什么影响?信息。
无论是麦克卢汉,还是鲍德里亚的理论,都已经强调了信息、电子信息的出现,可能会使人类社会的结构、边界、性质、方式都发生变化。
麦克卢汉最出名的理论是地球村。请想象一下,在父母辈的时代,朋友大部分是单位的同事,来自家族、村子、单位。仅仅过了几十年,现在你的朋友圈还受公司约束吗?
鲍德里亚的观点是,如果人类无止境地或者完全泛滥地利用数字化信息技术,我们很快就会进入一个比真还真的时代,那些由人工智能生成的照片、文字,你觉得它是真的吗?
鲍德里亚说的“比真还真”的时代,它已经来了。
2. 语言是思想的边界,技术是思想的实现
这几个月太热闹了,或许先不需要这么快下结论。当你埋头在屋子里面,研究最新技术进展,比如现在的最火的ChatGPT,出门一看,好像满世界的人都把它当成了很新鲜的事情。
ChatGPT3.0算是一个比较大的突破,但它两年前就有了。它的结构、基本原理也存在很多年了。
语言是思想的边界,这是维特根斯坦说的,但我要给他再加一句话,技术是思想的实现。
我们忽略了一点,能够把技术开发出来,先得有一个思想。ChatGPT,实际上它只是一种提取已经被沉淀、被记忆的知识的一种交互方式,底下什么?是基础模型。像谷歌的BERT,Facebook的LLaMa。
为什么GPT现在那么火?它背后是OpenAI的技术信仰,再加上微软的Satya(微软CEO)、Kevin Scott(微软CTO)这些人的技术信仰的结合。这些人都相信,靠大量的语料和海量的计算,能够产生出对于知识的沉淀和应用。
Sam Altman说,GPT走出的第一步,是拿把人类知识先沉淀下来。就像先把玫瑰花蒸馏成玫瑰精油。
但精油太浓了,你要使用的话,需要调和。所以第二步,就是用Instruct(指令)的方法,用提示词的方法,把精炼的玫瑰精油,滴到沐浴露中去。
但是,这件事没被证明可行之前,某种意义上是完全要靠信仰支撑的事情。有多少人敢这么做?又要花人力、花时间、花海量的金钱,结果可能竹篮打水一场空。某种意义上,它的成功也可以理解成幸存者偏差。
我认为你要赞叹的,不应该是ChatGPT的模型多么伟大,而是它背后耐得住寂寞、怀疑的这种定力、决心、信心,这已经是一种技术信仰了。
我们有没有对于工具、对于数字化技术的技术信仰?这才是我们应该问自己的。
认知达到信仰的层面,才能够选一条没有人走过的路。尽管今天还走不通,但你就认为这条路可以走,因为第一性原理告诉你,这样做是对的,只不过人类的技术还没有发展到那一步,还证明不出来。
另一个例子是SpaceX。它成功了,大家都觉得太牛了。但当马斯克后来接受媒体采访时,他哭了。他说当时我认为火箭可以回收,但NASA、所有大咖级人物、科学家都跟他讲,这条路是走不通的。
OpenAI是一样的,我们认为它在2023年1月忽然出名,怎么可能?它背后有太多的辛酸、坚持、疑惑、摇摆,只不过坚持下来了。
3. 现在的机器并不具备真正的思想力
这一轮技术,大概率就是把我们的知识进行提炼。知识哪来的?是我们的所作所为、所写所说,落成的文字、视频、语音,经过数字化之后,被机器去提炼,建成一种模型,变成知识沉淀下来。
为什么大家觉得它很神奇呢?因为没有任何一个人有这种能力,能记住人类所有的知识。
有些人觉得,机器会涌现出一些思想能力。确实,它会表现成思想能力。但如果你知道它的算法是如何做出来的,你还是会形成自己的判断。
我要想先声明一下,每个人都会对这种现象产生不同的解读。我的解读是,现在的机器并不具备真正的思想力,是把人类知识记忆之后的一种使用能力。
机器是不会想的,想这个词是人类自己发明出来的。如果你硬把这种能力视为“想”,不能说错与对,但它会误导你对机器的判断、理解和定义。
4. 做一个思想实验,这轮技术到底是什么?
如果我们发现了,可以通过蒸馏的方式,从植物中蒸馏出它的油性。请问,花园甲跟花园乙的拥有者,做同样的事情,最后的价值会是怎样的?他们做出来的东西,对社会的影响力会大不相同。
花园甲的拥有者,会怀疑提纯机器不行?还是会痛定思痛,发现原料有问题?
当我们从农业文明进入工业文明,已经受过很多降维打击了。当物质、能量变成信息的时候,会带来更加降维式的打击。
这种竞争方式,已经不是技术能力的竞争,有钱没钱的竞争……而是文明在一较高低。
你的文明所表现的形式,能否被新一代的会思考的机器学到、吸收到,并且让它的行为方式对你有利?
ChatGPT刚火的时候,知乎股价飞涨。在中国,具备语言语料的网站绝对不止知乎。为什么它涨得那么厉害?我没做过详细统计,但我认为,知乎的花园可能类似于花园乙。
我们再扪心自问下,贵公司、贵机构、贵组织,你们的知识的表现形式、呈现方式,更像是左边还是右边?你未来如何跟具备这样能力的公司竞争?
如果你的信息,无法沉淀成能被机器学习的知识。这一轮的机器能力,你能够利用到的概率就大为降低。

02

机器文明,冰山一角

时代的巨变有个好处,不管你多么先进,多么落后,在这个时代又拉平了。

微软CEO Satya说的刷新,Hit Refresh就是此意,重来过一遍。在这一轮的技术潮流下,我们如何重新获得定位?需要我们每一个人思考。
1. 冲着ChatGPT创新,等于拎包入住而没有自己的地基
古人有一句话叫“圣人畏因,凡人畏果。” 有了理念、信仰、追求,才能产生结果,如果我们只抓着结果,很容易只见树木、不见森林。
拿ChatGPT来举例子。当我们看到这个技术结果的时候,要相信它不是从石头里蹦出来的。
2023年1月,微软CEO Satya和Sam Altman(OpenAI CEO)的合照在网上很火,他们跟大家介绍了双方的合作和技术的进步。但其实在2016年,双方已经开始探讨了。
OpenAI的成长,也是在不断摸索的。大家可以看一本书,《深度学习革命》,以OpenAI这批人为代表的深度学习实践者和探索者们,怎样从当初对谷歌人工智能产生一些担忧,到成立这间公司。一切都是有脉络可循的,是几十年的摸索、试错,才走到今天这一步的。
如果我们冲着GPT的模型去了,从创新的角度来讲,我把它称之为拎包入住。
大家想象一下,一片未开垦的土地,长满杂草茂木。但有人把它开垦出来了,又根据土地的特点,设计出人类能够居住的房屋,把楼给造起来了,再找一些设计师精装修。最后招商引资。
这时我们都看到了趋势,发现只要找个50层以上的公寓房做生意就能够大赚特赚,就拎包入住了。当时确实大赚特赚了。但若干年之后,文明变了,潮流变了,50层以上的房屋不受欢迎了,你怎么办?
OpenAI有很多算法,很多工具,它曾经在机器人上投资,现在有人去看它的机器人吗?ChatGPT只是它在众多的尝试中,凑巧发现了一条路可以往前走。你要跟着它这条路走,有点像守株待兔,认为兔子永远会撞在这棵树上。
我认为,其实各位可以在这一轮,去看OpenAI的理念,最早这些人是怎么想的、怎么做的、愿景是什么。
2. ChatGPT的冰山下面是什么?
如果说我们看到了冰山一角,下面是什么?
拿ChatGPT举例,它下层有两类支柱,产物、产出它的人。别只关注ChatGPT或GPT4,去看更深层的东西。
一方面是大语言模型,赖以沉淀人类所有的知识,或者是能够被它学习到的所有知识的机制。是Transformer/RNN/CNN/LSTM,是用数学的方式,表征物理世界和人类知识与行为的特征。
另一方面,OpenAI,也是由人构成。公司就是由一批志同道合者构成的一个组织,去完成一个共同的愿景,共同的一个目标。
这些人才是一批有科学修养的,又有工程实现能力的,又对语言学、计算机科学的第一性原理有深刻理解的。更关键的是,有一个共同的理想,坚信做这件事是对的,是有用的。
其实有很多人正因为OpenAI所谓的成功,反而离开了,因为觉得愿景不一样了。这是它的人才特征。
人才特征的背后又是什么?容错、合作、开放的文化,不拘一格降人才的用人风格,配合的风格,彼此交流的风格。
如果我们连办公场所都严格要求,老板、员工分级坐,等级森严,是很漠然的群体,有可能做成这件事吗?
我自己也是管理者,感触还蛮深的。各个企业的文化真的不一样。有开放的、有封闭的、有严厉的、有宽松的、有说一套做一套的,有说知行合一的,所处的行业特征,社会的氛围也真的是不一样的。
错误是成功的前提条件。你公司的环境,整个的社会大环境,允许不允许这种容错文化的出现?
所以有些人问我,咱们应该怎么做ChatGPT?
我说如果你要做一个ChatGPT,个人的建议,还是别玩这个游戏了。就像是打冰球,追着冰球打太难了,你最好天天求什么?求前面没人打了。但那时,新的赛道又开出来了。天天在说弯道超车,等你真超过去才发现,前面已经没车了。
新开辟一条道路,需要建立这种环境,建立这种文化,培养这种人才,这才是最基本的。Sam Altman那批人就是坚信大模型大力出奇迹,就能够表征人类的知识,就这么简单。
3. 通用人工智能(AGI)
通用人工智能(AGI)是他们的追求。OpenAI会为之付出无穷的努力,不懈的追求,直到证明它绝对不行了。只不过,很巧它成了。但就算在AGI上,大家的关注点,也都各有侧重。
20年前谷歌刚成立的时候,只是个搜索引擎。你会感到很无厘头,一个搜索引擎,为什么把不作恶作为标准?现在大家明白了吧,在一个“比真还真的时代”,给你的信息当然可以作恶。     
AI也一样。微软明确指出要做负责任的AI,谷歌说的叫不作恶。OpenAI提出UBI,全民基本收入(UBI,是指“无条件”地为所有个人定期发放一笔现金收入)。    
Sam Altman在采访中说,需要新思想回答的三个问题是:如何分配通用人工智能产生的利润?如何分享通用人工智能的访问权?如何分担通用人工智能的治理权?
大家想一想,为什么Sam Altman想到了这三个问题?
还是因为AGI一旦推出来,大家马上就会发现,它的能力太大了,如果不能让人类在这三个问题上达成共识,有人赚便宜、有人吃亏,就产生动荡的因素了。AGI带来的这些议题,需要我们去了解。
4. 有些议题其实已经被思考100多年了
建议大家看一下《大都会》这部电影。它1927年上映,到现在马上100年了,你会发现,我们几乎在重演历史。
它出现了三个文明的特质:
1)无用的机器。出现了过度设计的无用的自动机。仔细想一想,它每一个理念,每一个精巧的激发过程和动作,是不是我们现在人工智能、机器人的思想的底蕴?
那么,我们有没有可能在不接受,甚至排斥“无用的自动机”前提下,鼓励工程师,孩子们去创造出这种自动机的文明?当不被鼓励、允许时候,他们有没有可能去做自动化的事儿?
我再举个例子,我们这个文明是不接受多米诺骨牌有任何价值的。但实际上,多米诺骨牌跟无用的自动机,背后都有一个隐含的、对于自动机的一种强烈的发自内心的追求。人工智能没成功前的所有投入,都是无用的自动机。这就是我们要深思的。
2)魔法师的学徒。名字来源于歌德的戏剧,它在全球技术领域经常被引用,说人类在开创一些魔法式的技术,但魔法需要被制衡,开启魔法以外,要会关。
3)精灵宝瓶。你不但要关掉魔法,还得把它收回去。留在世上可能也会有问题。
《大都会》结尾有一句经典名言,说在负责思考、筹划的大脑跟执行任务的双手之间,必须有一个调节者,这个调节者必须是人心。
我想说,当你为ChatGPT激动不已,脑补着很多东西的时候,有些议题其实已经被思考100多年了。而且,还没有定论。一两百年过去了,大家仍然在探讨自动机的普遍流行造成的后果,和相应的人文上的制约。
这就是盖子揭开之后,人类所面临的话题。这是远比所谓的人工智能奇异点,更宏大、更深刻、更严峻的话题。

03

如何利用机器?

“教-学”相长,“有-用”相随

人和机器的关系是什么?比较理想的状况,是由机器弥补人类的弱点。那么,首先机器的优点、弱点是什么?人类的优点、弱点是什么?我们知道吗?

第二,人类怎么指挥机器?机器怎么能够被指挥?怎么能够不被指挥?我们考虑过吗?
第三,教学相长。我们要明白它是怎么学的,才能明白怎么去教它。

1. “教-学”相长

这点我特别希望想跟大家强调一下。否则,我们会误以为机器真能凭空学到知识。
上图中有几个机器智能的关键词,表征、映射、记忆、应用、学习。
图中还有从GPT4官方网站上取的一句话,这是它对GPT4的定义。我们把GPT4开发出来,就是让它去解决困难的问题,靠什么呢?靠形成的通用知识。
问题是输入,映射能力就是这种函数关系,产生的结果就是问题被解决掉了。
我认为它说得恰到好处,没有说什么特别花哨的东西,就是由一种知识去解决一种问题。知识是桥梁,问题是输入,把问题解决了是结果。
如果再优化,这三个等式。
第一个公式在描述什么?这是一种映射。即通过输入的变量,在一定参数的配置下,产生你要的Y。
第二个公式:这个Y是永远不可能完全满足你的。所以怎么办?理想的Y,减去每次产生的Y,产生一个偏差。
第三个公式:你接下来要做的事儿,就是不管用什么样的算法,把偏差最小化。
我们如何用机器?不就这三件事儿吗?
你作为一个人,是不是同样也在做这三件事儿?也要根据你的X和Y搭建一种函数,一种能力,也要去配置参数?每次你的Y也会因为一些小细节,比如这个月的销售涨了,产品的次品率低了,跟你的理想值之间出现偏差,你也要想办法把偏差减到最小。
明白机器的做法,你就能知道,我们应对的是怎样的时代了。
2. 机器的祛魅与魅化
如果再剖开来看,我今天不是在讲技术的细节,而是在讲它的祛魅。
我们给ChatGPT披了一张画皮,呈现出一个智者的形象。想象一下,ChatGPT是一个狐仙。我问,它答,你会觉着它是一个神人。但把这画皮一揭开,原来你提出的问题,就是一段指令,你还会觉得很神奇吗?
你还会对它有任何的人性化的连接吗?你还会觉着,它要把我的工作代替掉了吗?你觉得,是它把你的工作代替掉,还是它所赋能的一个机器或一个人把你的工作代替掉?
我们讨论了给它祛魅,它有被魅化的可能吗?如果基于你喜欢什么,会对什么产生情感的共鸣,如果我想给你造成一种它具有人性或神性的印象,也是可以做到的。
比如,给一个机器人取名叫欢欢,或者取一个让你感觉到很亲切的名字,或者让机器的表达去模拟人的方式,让你产生情感的绑定。你觉着有多少人能够受得了这种感情的诱惑?
也就是说,我们的决定和共识,会决定我们的下一代,决定我们自己怎样看待机器,是祛魅化?还是妖魅化?
这点并没有达成共识,甚至没有人去谈这件事情。
在英文的语境下的Robots,bots,中文居然把它翻译成机器人,自然地就把它向人靠了。实际上Robots和bots没有任何的“人”的含义。
我们这个文明,是否需要主动地把这种机器能力,用语言的方式,用形象的方式,用各种各样的方式,把它跟人连在一起,这是不是走得有点太大了?这也是一个问题。
3. 机器是不理解概念的,机器理解的是概率分布
再给大家举个例子,我对ChatGPT提出了一个问题:“我想去中国旅游,我从来没去过,那里的哪座雪山值得去看看?”
它回答说,“我无法判断雪山的美丽程度”,为什么ChatGPT给出了这样一句答案?这句话相对来讲,很符合人性。
但实际上机器怎么理解的?美字之后,好、妙、丽,各有概率的计算值。其中丽字的概率值最高,所以它就选了美丽。接下来呢,又有几个字备选。程、景、心,在人类的语言中也都和美相关,比如美丽程度,美丽景色,美丽心情。机器发现“程度”两个字概率更高。
最后它是自然就选择了“度”字了吗?不是的,度字概率最高,所以这句话就出来了。如果你前面问的问题是《三体》的主角是谁,八成它会选择,心。
我们认为它很完备,懂人话,说人话。但你发现没有?人跟机器的理解是不一样的。如果我们不知道这一点,就被它魅住了。一旦被它魅住,你很难成为它的主人。
所以,你要明白这一点。
其实机器是不理解概念的,机器理解的是概率分布。语言,每一个字的出现,都是有概率分布的。它的答案是基于概率的一种推理,不是概念的推理,这一点我们务必要明白,这是祛魅的一个必要条件。Sam Altman(OpenAI CEO)能够坚定信念,其实是因为他对语言的特征,有深刻的理解。
你觉得机器像人对吧?其实我要说,是我们太不像人了,所以才认为机器像人。何以为人?尤其是当我们知道自己有那么多的误区、偏差之后,如何去弥补、防范思维误区和偏差,让我们做得像个人?这是远比AI会不会代替掉人,更核心、更本质的一句话。
越是纷纷扰扰,越要守住第一性原理。这个时代,门开了一道又一道,但外界其实一直这样,是有风险的,只是我们没有跳出舒适区。
4. 我们应该用AI干什么?
下图是微软的数字化智能反馈链,现在特别出名。基本概念是,帮我们建立起跟世间所有的对象的实时连接。知道它的状态,反馈回来,进行优化,进行完善。
可以理解成什么呢?无处不在的智能、计算、感知、决策。但实际你看,除了中间写了Data AI,其余圆圈里,写的都是我们日常的工作、学习、生活。
我想强调的是,AI是干什么的?它跟上一世纪出现的电的特点是一样的,应该是无处不在,通过建模仿真来进行计算和优化,用机器能力去赋能、帮助和完善我们的每一个过程。
但如果丧失掉了人的主观能动性,如果没有人的约束、制约、控制,没有负反馈,全是正反馈,可能让它自激了。它可能会在瞬间用掉地球的资源,理论上讲是可以达到这种情况的。
所以就算是GPT,它也经过培训,人是在决策链里面的。GPT这样已经有很多知识沉淀的模型,能够被使用,也是因为人的主观能动性在继续发挥作用。
明白这个道理之后,你会发现实现起来没那么复杂。
OpenAI跟微软合作,现在开放的这四个功能,你发现没有,严格意义来讲,都不会被普通用户使用到。
我们用到的是什么?是被它这种能力赋能的,所加强的,一种工作的性质和内容。
所以虽然OpenAI的技术很先进,微软也在大力地推动,我们追求的不是ChatGPT或GPT,而是整个的一个系统观,是Azure AI。Azure AI里面有除了OpenAI以外的很多功能,有很多技术的同步的实现。

04

知其雄,守其雌

如何面对这个时代?

1. 三个关键词
有三个词可以供大家参考——“煤气灯下”、 知识“肥胖症”、知识“智子”。
煤气灯下。Gas Lighting是2022年,韦伯字典的全球热词,是上一世纪40年代一部电影的名称。电影讲述了,一位先生想谋取他太太的财物,一直在给太太洗脑。电影用蒙太奇的手法,煤气灯摇摇晃晃,让人感觉到眩晕,感觉到不确定。它为什么变成全球热词了呢?因为现在机器生成的虚假消息和错误消息,就如同摇晃的煤气灯,让我们失去了对什么是真实的客观判断。
知识肥胖症。我们都知道,垃圾食品可能会带来身体肥胖。但是大家想一想,每天我们通过手机,看了多少知识快餐?
扪心自问一下,我们消化得了吗?我们的大脑,没法去理解,也没法记忆,就是不断吞下很多信息。带来了大脑的虚假连接,每个连接都是耗能的。我们天天在消耗那么大的能量,但由于知识没有重复,其实什么也没记下来。
那么,我们是愿意沉浸在知识的恐惧症中,觉着不学要落伍,还是愿意理解能力的局限或者约束,来学我们能够消化的知识?这一点,能够决定我们的生活素质的高低。
知识智子。算法机器,是把人类知识吃进去,消化,把它变成精华提炼出来。如果你没有不断给它进入新的知识,或者说,新的知识也是这个引擎产生出来的,大家想象到结果了吗?
它就变成了一个正反馈,就像狗咬尾巴一样,不断在打转,不断地去精华同样的知识。一开始,可能会有一些所谓的涌现现象,但我觉得,如果你不给它添一些额外知识,机器转得又快,越来越压缩,你会看到这个模型好像越来越小,越来越精练,越来越有用,但实际上它的知识固化了。
类似于《三体》里的智子,是一种源头上的约束,让新的知识无法产生。
这种情况不一定出现,但是有这样的隐忧。它是受机器能力本身所局限,尤其当我们人类不加约束去运用的时候,就会出现这种情况。
2. 文明这个话题很关键
提炼知识的算法是没有文明的,但你给它供给的原料是有文明的。我们要给这种技术以文明,我们的文明,让它能够沉淀下来,为我们所用。
文明这个话题很关键,我拿几张图,给大家展现一下,还是蛮发人深思的。我在中文语境下,试了一些关键词,让我很警醒。
“开心的农民在广阔的农田里驾驶着拖拉机收割。”你觉着机器在中文语境中应该给你什么样的图片?
我又试了一些词汇,当我想让它产生出一个我希望跟我的文明相吻合的图像时,它产生的是这样的图像,不能说它错误,是说它跟文明的背景不兼容。
我有点着急,好歹给我出点跟中国相关的形象吧?所以我输入了语文老师,符合中国的文化特点的语文老师。
你看它给我产生一个什么形象。一个非常古旧的、传统的、没有现代化文明特征的一个语文老师的形象。但我们中国的语文老师有这么古老吗?他们是不是也在用计算机,穿现代化的服装,在给一帮活泼的学生在讲课?
在算法界,这叫做语料的偏差和偏误。今天我一直在跟大家讲的,不是算法,要比算法大得多。文化、文明的传承之前要提炼,沉淀下来,让我们的下一代,包括我们自己,能利用这种知识的沉淀来帮助我们。
我们希望什么样的工具,什么样的提炼是适合我们的需求的,这是值得我们每一个人警醒的。这是对我们每个人的自勉。

05

Don't Panic,不要惊慌

在小说《沙丘》描述的场景中,人类的技术已经很先进了,可以穿越太空。但人与人之间的打斗靠什么?原始武器。

知道为什么吗?在小说中,人类历史出现过一件什么事?巴特勒圣战,有一个种族,特别热衷于机器能力,发明了很多人工智能和智能机器人,而且把机器能力用在了战争上。开始大家不在意,结果越做越先进,这个反噬差点把人类都给灭掉。
为什么这本小说在西方影响那么大?冲的不只是机器,是机械的价值观。
下面这一段的话,是主角的导师跟他讲的,“你就是用了太多的机器能力,结果居然忘了在沙漠里要戴上面罩。”主角跟导师说,那你怎么不提醒我?导师说,就是因为你过于依赖机器的提醒能力,把你自己的人的能力都丧失掉了。
我们面临的是一个伟大的时代,而且大概率在不知不觉中已经跨入了这个伟大的时代,已经是其中一份子了。
那么怎么办?Don't Panic,不要惊慌,别担心,别着急。为什么?
对机器能力的过度恐惧,实际上是对人类,对我们自己主观能动性的极度自卑。我们高估了我们记忆的作用与知识的难度,却低估了我们思想的深度,和人的主观能动性。
但要保住人类的主观能动性,还要花一些心思去理解现代化的机器的能力,成为机器的主人翁,也就让自己更有可能性,有更大的概率,进化成新一代的人类。
关注uSMART
FacebookTwitterInstagramYouTube 追踪我们,查看更多实时财经市场信息。想和全球志同道合的人交流和发现投资的乐趣?加入 uSMART投资群 并分享您的独特观点!立刻扫描下载uSMART APP!
重要提示及免责声明
盈立证券有限公司(“盈立”)在撰写这篇文章时是基于盈立的内部研究和公开第三方信息来源。尽管盈立在准备这篇文章时已经尽力确保内容为准确,但盈立不保证文章信息的准确性、及时性或完整性,并对本文中的任何观点不承担责任。观点、预测和估计反映了盈立在文章发布日期的评估,并可能发生变化。盈立无义务通知您或任何人有关任何此类变化。您必须对本文中涉及的任何事项做出独立分析及判断。盈立及盈立的董事、高级人员、雇员或代理人将不对任何人因依赖本文中的任何陈述或文章内容中的任何遗漏而遭受的任何损失或损害承担责任。文章内容仅供参考,并不构成任何证券、金融产品或工具的要约、招揽、建议、意见或保证。
投资涉及风险,证券的价值和收益可能会上升或下降。往绩数字并非预测未来表现的指标。
uSMART
轻松入门 投资财富增值
开户